
JBEI Performance Metric for FY16: Develop an improved metabolic engineering method 
for modifying microorganisms for biofuel production from cellulosic sugars 

 
Q2 Metric: New methods to modify or control regulation of engineered pathways for biofuel 
production 
 

1. BACKGROUND  
In recent years, we have synthesized and engineered many metabolic pathways in microbial hosts to 

produce useful biofuel molecules. Frequently, we have observed that the titer and yield are limited by the inefficient 
use of cellular resources and metabolic imbalance. Expression of pathway genes at adequate levels is essential for 
efficient conversion of starting sugars to final fuel products. There have been extensive studies to engineer the 
strength of promoters and ribosomal binding sites (RBSs) to regulate gene expression. Combinatorial libraries of 
promoters, RBSs, and intergenic regions have been used to tune the expression level of several genes in 
heterologous pathways to optimize the production of isoprenoids. These static control strategies have been used to 
regulate the biofuel pathways. On the other hand, biofuel-producing cells can sense nutritional resources, 
temperature, and pH in their environment, and more importantly, the status of their biosynthetic pathways. They can 
adapt their transcription, translation, and enzymatic catalysis in response to these conditions, so that genes are only 
transcribed and expressed when they are needed and in proper amounts, and metabolic intermediates are converted 
to downstream products immediately after synthesis. 

In this report, we describe some new methods for various biofuels pathway regulation recently developed at JBEI. 

 

2.  ENGINEERING FATTY ACID-DERIVED BIOFUEL PATHWAYS WITH FATTY 
ACID-RESPONSIVE REGULATORS 

A valuable synthetic biology tool that has been used at JBEI is the Dynamic Sensor-Regulator System 
(DSRS), whereby a metabolite-responsive transcription factor is used to regulate selected pathway genes based on 
concentrations of the cognate metabolite.  This can be a more efficient means of regulation than, for example, use of 
inducers like IPTG (isopropyl β-D-1-thiogalactopyranoside), because the DSRS will upregulate pathway genes only 
when important metabolites are being produced, as opposed to a more non-specific regulation scheme that does not 
account for optimal timing of pathway gene expression.  Here, we present an example of using DSRS in the context 
of fatty acid ethyl esters (FAEE), a renewable diesel substitute. 

2.1. FadR as a regulator of fatty acid biosynthesis and metabolism 

Regulation of fatty acid biosynthesis and β-oxidation is complex, as described elsewhere (Handke et al., 
2011; Janssen and Steinbuchel, 2014; Magnuson et al., 1993).  One important regulatory element in E. coli is the 
transcription factor, FadR.  FadR is a negative transcriptional regulator of the fad (fatty acid degradation, or β-
oxidation) operon.  When fatty acyl-CoAs are at very low intracellular concentration, FadR binds to promoters of all 
β-oxidation genes and blocks access for RNA polymerase, thus preventing transcription.  Conversely, when acyl-
CoAs are present, they bind with FadR and it is released from its binding site on the promoter, thus allowing (de-
repressing) transcription.  FadR can also act as a positive regulator (transcriptional activator) of certain fatty acid 
biosynthesis genes, such as fabA and fabB.   

2.2. Using synthetic FadR promoters and DSRS to efficiently regulate FAEE biosynthesis 

JBEI researchers have developed and used the DSRS approach to successfully increase production of the 
fatty acid-derived FAEEs (Zhang et al., 2012). In this study, certain modules of the FAEE biosynthetic pathway 
were placed under the regulatory control of synthetic hybrid promoters that included FadR-binding sites as well as 
LacI-binding sites.  The concept behind the hybrid promoters was to make them responsive to fatty acyl-CoAs 
(which are key metabolites in the FAEE pathway) as well as to IPTG, which introduced additional stringency, as 
endogenous fatty acids could cause leaky expression if only FadR-binding sites were present.  A schematic of the 
approach is shown in Figure 1a.  As shown, synthetic hybrid promoters containing FadR-binding sites were used to 



control expression of genes in Module B (pdc and adhB, catalyzing ethanol production) and Module C (fadD, an 
acetyl-CoA synthetase, and atfA, a wax-ester synthase that produces FAEEs from acyl-CoAs and ethanol).  As 
shown in Figure 1b, the approach was highly successful, resulting in a 3- to 4-fold increase in FAEE titers to attain a 
best titer of 1.5 g/L (Zhang et al., 2012).  Not only did use of the synthetic promoters increase titers, but plasmid 
stability in this 3-plasmid system also increased dramatically. 

 
Figure 1. Use of a Dynamic Sensor-Regulator System (DSRS) to improve FAEE titers.  From Zhang et al. (2012). 

 
3. ALCOHOL (1-BUTANOL) SENSORS  

Directed evolution, in which a non-natural selective pressure is applied to a diverse pool of target genetic 
sequences to evolve a desired trait, is a hallmark of metabolic engineering efforts to improve biological function. 
The success of any directed evolution strategy is contingent upon the effectiveness of two key steps: first, generating 
large, diverse genotypic libraries and second, efficiently identifying the desired phenotype from a heterogeneous 
population.  

Our ability to generate genotypic diversity far outstrips the ability to efficiently and effectively interrogate 
the resulting library. In vitro methods for incorporation of either random or targeted mutations into user-specified 
plasmid DNA sequences are now numerous and well developed. The potential for genetic diversity to yield process 
improvements, however, is realized only when the target phenotype can be screened or selected for. For this reason, 
advances in directed evolution approaches within the context of metabolic engineering have been almost exclusively 
applied to improving host resistance to a toxic product, such as the growth-coupled improvement in tolerance to 
olefins (Mingardon et al., 2015) or overproduction of a natural chromophore, such as lycopene (Wang et al., 2009). 

In contrast, the majority of small molecules being targeted for overproduction today, including fatty acids, diols and 
diamines, and short-chain alcohols among others, cannot be directly screened or selected for. In nature, the need for 
sensitive, specific, small-molecule detection and response has been addressed, in part, through evolution and 
selection for ligand-responsive transcription factors and their cognate promoters. We developed a generalized 
approach to screen or select for improved small-molecule biosynthesis using transcription factor-based biosensors 
(Dietrich et al., 2012). Using a tetracycline resistance gene downstream (3′) of a small-molecule inducible promoter, 
we coupled host antibiotic resistance, and hence growth rate, to either small-molecule concentration in the growth 
medium or a small-molecule production phenotype. We constructed biosensors for alcohols, using transcription 
factor-promoter pairs derived from Pseudomonas putida, Thauera butanivorans, or E. coli. Transcription factors 
were selected for specific activation by 1-butanol, and we demonstrated product-dependent growth in E. coli using 
this compound. The 1-butanol biosensor was applied in a proof-of-principle liquid culture screen to optimize 1-
butanol biosynthesis in engineered E. coli, identifying a pathway variant yielding a 35% increase in 1-butanol 
specific productivity through optimization of enzyme expression levels. Lastly, to demonstrate the capacity to select 
for enzymatic activity, we applied the 1-butanol biosensor as synthetic selection, coupling in vivo 1-butanol 
biosynthesis to E. coli fitness.  We observed a 120-fold enrichment for a 1-butanol production phenotype following 
a single round of positive selection (Figure 2). 

 



 
Figure 2. BmoR-PBMO biosensor screen for improved 1-butanol biosynthesis. (a) The mean total mixed alcohol titer in 
E. coli DH1 ΔadhE harboring pKivD#1 was significantly lower (t test; unpaired, p = 1 × 10-11) as compared to a 
heterogeneous population containing mutated kivD and ADH6 ribosome binding site (RBS) sequences, a result 
suggesting that the initial RBS was non-optimal. The RBS library population produced a broad range of alcohol titers 
(n = 50; box and whisker plot depicts 10th, 25th, median, 75th, and 90th percentiles) suitable for characterization of 
the high-throughput screen. (b) The biosensor response (OD600) to spent production medium from a 960-member 
library of mutated kivD and ADH6 RBS sequences was distributed around OD600 = 0.31. GC-MS was used to confirm 
1-butanol titers for 10% of the sample population, demonstrating a positive correlation between biosensor response 
and 1-butanol titer. From Dietrich et al. (2012). 

4. ISOPRENOID PATHWAY REGULATION 
The regulatory mechanisms of the isoprenoid production pathways have been most extensively investigated 

in eukaryotes, especially in plants. In bacteria, relevant genes for a specific function are generally clustered together 
and transcribed collectively as an operon in the genome. However, the genes annotated as a part of the non-
mevalonate methylerythritol 4-phosphate (MEP) pathway are dispersed in the E. coli genome. In addition, no 
transcription factor has been found to induce or to repress the MEP pathway genes in E. coli. Therefore, 
transcriptional regulation of the bacterial MEP pathway has not been well-characterized and the engineering of the 
MEP pathway regulation has not been successful so far. Although transcriptional regulation of the MEP pathway is 
still obscure in prokaryotes, the regulation mechanisms of the mevalonate (MVA) pathway have been reported in 
eukaryotes at the transcriptional, translational, and post-translational levels. We hypothesized that this information 
could be applicable to other microbial production hosts containing either an endogenous or heterologous MVA 
pathway.  

4.1. Early work on mevalonate pathway regulation  

As an early example, microbial auxotrophy has been used to monitor growth-limiting small molecules. In 
this early work, we had reported a novel biosensor strain for detection and quantification of mevalonate, a key 
intermediate in the biosynthesis of isoprenoids via the MVA pathway (Pfleger et al., 2007). By deleting the native 
pathway for the production of two universal precursors of isoprenoids, IPP and DMAPP, that are necessary for 
growth, and incorporating the mevalonate-utilizing pathway (by which exogenous mevalonate can be converted into 
IPP and DMAPP), the mevalonate sensor was developed to measure the concentration of mevalonate in mevalonate-
producing cultures through simple growth monitoring. The biosensor strain was an Escherichia coli mevalonate 
auxotroph that expresses the green fluorescent protein (GFP) and reports on the mevalonate concentration in the 
growth medium through a change in growth rate.  

Another example is a method for tuning the expression of multiple genes within operons by generating 
libraries of tunable intergenic regions (TIGRs), recombining various post-transcriptional control elements, and 
screening for the desired relative expression levels (Pfleger et al., 2006). TIGRs can vary the relative expression of 
two reporter genes over a 100-fold range and balance expression of three genes in an operon that encodes a 
heterologous mevalonate biosynthetic pathway, resulting in a seven-fold increase in mevalonate production.  

 

 

Scheme 1. 2-Keto Acid-Derived Alcohol Production in E. colia

a(a) Biosensor-relevant 2-keto acid-derived alcohols (blue) produced in engineered E. coli are rooted in high-flux amino acid biosynthetic pathways
(red). Deletion of the ilvDAYC operon yielded a valine, isoleucine, and leucine auxotroph incapable of producing biosensor-inducing alcohols
without 2-keto acid supplementation. 2-Oxopentanoate, the 2-keto acid precursor to 1-butanol, is not naturally produced in E. coli. (b)
Heterologously expressed L. lactis KivD and S. cerevisiae ADH6 were used to produce user-defined alcohols by medium supplementation with the
cognate 2-keto acid substrate.

Figure 5. BmoR-PBMO biosensor screen for improved 1-butanol biosynthesis. (a) The mean total mixed alcohol titer in E. coli DH1 ΔadhE harboring
pKivD#1 was significantly lower (t test; unpaired, p = 1 × 10−11) as compared to a heterogeneous population containing mutated kivD and ADH6
ribosome binding site (RBS) sequences, a result suggesting the initial RBS was nonoptimal. The RBS library population produced a broad range of
alcohol titers (n = 50; box and whisker plot depicts 10th, 25th, median, 75th, and 90th percentiles) suitable for characterization of the high-
throughput screen. (b) The biosensor response (OD600) to spent production medium from a 960-member library of mutated kivD and ADH6 RBS
sequences was distributed around OD600 = 0.31. Gas chromatography−mass spectrometry was used to confirm 1-butanol titers for 10% of the
sample population, demonstrating a positive correlation between biosensor response and 1-butanol titer.
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4.2. Dynamic regulation of the mevalonate pathway  

The isoprenoid pathway produces intermediates that are toxic to the cell. The accumulation of these toxic 
intermediates can lead to a stress response, and dynamic control of the pathway could be applied to prevent the 
accumulation of toxic metabolites. Such a strategy requires sensors that can detect and respond to the metabolite, but 
such sensors are largely unknown. We reasoned that the host's native stress response system would respond when 
toxic metabolites accumulated. Transcript profiling, using cDNA microarrays or RNAseq, offers a convenient way 
to evaluate the cell's transcriptional response to the accumulation of toxic metabolites, creating a list of candidate 
promoters that could be used to respond to intermediate toxicity. Using such promoters to regulate pathway 
expression in response to the intermediates creates a link between the cell's metabolic state and the expression of the 
metabolic pathway. We applied this approach to regulate toxic farnesyl diphosphate (FPP) accumulation in the 
isoprenoid biosynthetic pathway in E. coli (Dahl et al., 2013). We designed two strains with a heterologous 
mevalonate pathway for the production of the sesquiterpene, amorphadiene (Figure 3). One of the strains 
accumulated FPP due to a mutation that inactivated the sesquiterpene synthase, while the other expressed a 
functional sesquiterpene synthase that did not allow FPP accumulation because it efficiently metabolized FPP. 
Microarray analysis identified those genes either up-regulated or down-regulated by the accumulation of FPP, and a 
library of 35 promoters was chosen and screened for the ability to control production of the FPP-derived 
sesquiterpene, amorphadiene. We introduced the negative feedback to the FPP synthesis pathway and positive feed-
forward to downstream FPP-consuming enzyme (terpene synthase). Therefore, promoters that are down-regulated in 
response to FPP accumulation tuned expression of FPP-producing enzymes, whereas up-regulated promoters 
controlled the FPP-consuming enzyme.  The highest yield using these FPP-responsive promoters was obtained using 
a combination that weakly up-regulated FPP consumption, and weakly down-regulated FPP production, and the 
resulting self-regulated FPP production resulted in yields that were at least 2-fold higher compared to strains that 
used inducible or constitutive promoters. Moreover, this dynamic system eliminated the need for expensive inducers, 
reduced acetate accumulation, and improved growth.  

 
Figure 3. FPP-responsive dynamic pathway for terpene production. (A) Strategy to generate FPP stress. ADS, 
amorphadiene synthase; ADSmut, inactive mutant of ADS. (B) Time course of OD by FPP stress. Sampling time 
points for microarray analysis are numerically marked. (C) Microarray results of selected promoter’s gene expression 
under FPP stress (ADSmut strain/ADS strain). (D) IPTG-inducible vs FPP-responsive terpene production pathway. (E) 
Terpene production and growth of strains using either inducible or FPP-responsive promoters. From Dahl et al. 
(2013).  

4.3. IPP toxicity and development of an IPP sensor  

Previous studies have implicated prenyl diphosphate (e.g., isopentenyl diphosphate, or IPP) accumulation 
as a cause of reduced growth and decreased glucose uptake.  The strong correlation between glucose consumption 
and IPP accumulation suggests that glucose uptake may be inhibited, though this may be a nonspecific consequence 



of reduced membrane integrity or inhibited cell metabolism (George et al., 2014).  Further investigation to 
interrogate membrane integrity is an important first step towards addressing this uncertainty.  Increasing the 
expression of the reductase NudB facilitated an improvement in isopentenol titer and partially relieved IPP toxicity. 
Even though the mechanism of IPP-related toxicity is currently unknown, we hypothesized that sensing intracellular 
IPP level would be a good lever to dynamically regulate the IPP toxicity of the production strain and improve 
isoprenoid production. 

Adaptation is a behavior that allows cells to survive and thrive under constantly changing environmental 
conditions, and is characterized by rapid genetic change leading to rare beneficial mutations. Models and 
experimental data of the adaptive process suggest that a ‘variable mutation rate’ strategy is one of the strategies used 
by nature to evolve traits, where a period of high mutation rate increases the genetic diversity of populations with 
initially low phenotypic diversity, and the mutation rate decreases with increased genetic diversity in the population. 
Directed evolution strategies that generate mutant libraries in vitro are limited by the ligation efficiency, and those 
that use mutator strains with unregulated, high mutation rates to generate mutant libraries in vivo suffer from the 
accumulation of deleterious mutations that eventually lead to cell death. Although adaptation has proven useful for 
evolving certain phenotypes, its application has been limited to traits that are directly tied to growth. Therefore, a 
method capable of changing the mutation rate in vivo according to a particular phenotype, independent of whether it 
is linked to growth, could circumvent the constraints set by ligation inefficiencies, deleterious mutations, and assay 
availability.  

We developed an adaptive-control system that increases the mutation rate in order to generate diversity in 
the population, and decreases the mutation rate as the concentration of a target metabolite increases (Chou and 
Keasling, 2013) (Figure 4). This system is called Feedback-Regulated Evolution of Phenotype (FREP), and we 
implemented it with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. As 
shown in Figure 4B, the sensor activates the promoter that controls mutD5 expression in the absence of the ligand 
IPP, and RFP acts as a reporter gene. MutD5 increases the mutation rate and mutations accumulate on the 
chromosome with each successive generation. Some of the mutations lead to increased IPP production, which 
decreases the ability of the sensor to activate expression of mutD5 and rfp in those cells. The mutations that increase 
IPP production are fixed into successive generations by passaging those cells with decreased rfp expression. We 
assembled synthetic transcription factors (TFs) using metabolic enzymes and constructed four different sensors that 
recognized IPP in bacteria and yeast, as shown in Figures 4C and 4E. A synthetic TF consists of three parts: Part1 
binds the target ligand, Part2 converts the binding signal into a change in RNA polymerase binding to the target 
promoter, and Part3 is an amino-acid linker fusing Part1 and Part2 together. Here, a sensor with synthetic TF IA 
includes Idi as Part1 and AraC’s DBD and linker as Part2 and Part3, respectively. In yeast, the synthetic TF consists 
of Idi as Part1, GAL4’s AD and DBD as Part2, and a 19-amino-acid linker as Part3 (Figure 4E). We verified FREP 
by evolving increased isoprenoid production. 

Figure 4. FREP design and synthetic 
transcription factors respond to IPP. (A) 
FREP implementation of the variable 
mutation strategy using an adaptive 
control system. The sensor controls the 
change in transcriptional level (DT) in 
the system. The actuator converts the 
transcriptional level (T) into a mutation 
rate (M) that modifies the genome to 
produce the target phenotype gauged by 
L. As L increases, the sensor increases 
DT, which causes the actuator to 
decrease M. (B) Evolution of increased 
IPP production using FREP. (C) A 
synthetic transcription factor (TF) 
consisting of three parts. One model for 
how IA regulates PBAD is IA binds the 
DNA sequence I1I2, activating 
transcription from PBAD in the absence of 

IPP (top), and IPP-bound IA dimerizes, preventing binding to I1I2 and activation of PBAD (bottom). (D) Output of four 
sensors, each with a different TF, to changing IPP concentrations in E. coli HC175 monitored with mcherry. Solid 
diamonds represent AC, solid triangles IA32, solid squares IA and solid circles IA44. The error bars represent one s.d. 



Each data point represents the average of three replicates. (E) A sensor for detecting IPP in S. cerevisiae. One 
model for PGAL10 regulation is that Idi dimerizes when bound to IPP, bringing the upstream activation sequence 
(UAS)-bound GAL4 DBD in close enough proximity with the GAL4 AD to activate transcription (top). In the absence of 
Part1 dimerization, there is no transcription from PGAL10 (bottom). (F) PGAL10 output from three sensors with synthetic 
TFs in S. cerevisiae MO219 induced with galactose. Output was monitored with the fluorescent protein yEcitrine and 
normalized to fluorescence in the absence of galactose. The error bars represent one s.d. Each data point represents 
the average of three replicates. From Chou and Keasling (2013).  

5. SYNTHETIC TRANSCRIPTIONAL FACTOR-PROMOTER SET FOR THE YEAST 
METABOLIC ENGINEERING TOOLBOX 

The majority of engineering in S. cerevisiae continues to rely on a handful of native promoters, where a 
few constitutive or galactose-inducible promoters remain the staple of the yeast genetic engineer's toolbox. In cases 
where promoter inducibility is desired, galactose induction is particularly problematic because of the limitations it 
imposes on the types of carbon sources that can be used for cultivation. As a potential solution to this challenge, the 
modular architecture of both the promoter sequences and the transcriptional factors (TFs) has been used to modify 
them for altered response and transcriptional regulation profiles. In particular, the native Gal4 TF and the 
corresponding promoters has been the target of many efforts to develop synthetic TF-promoter combinations 
towards desirable changes in inducer molecules, control, and dynamic range (Khalil et al., 2012; Louvion et al., 
1993; McIsaac et al., 2014; Ottoz et al., 2014).  At JBEI, we built upon these advances to develop a system that will 
be useful for engineering heterologous metabolic pathways, for finding optimum levels for each gene product in a 
given pathway, and for expressing multiple genes.  

We constructed a library of hybrid promoters that are regulated by a synthetic TF (Figure 5). The hybrid 
promoters are composed of native S. cerevisiae promoters, where the operator regions have been replaced with 
sequences that recognize the bacterial LexA DNA-binding protein. Correspondingly, the synthetic TF are composed 
of the DNA-binding domain of the LexA protein fused with the human estrogen-binding domain (hER) and the viral 
activator domain, VP16. The resulting system avoids transcription of any native S. cerevisiae genes, and the gene of 
interest driven by the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. 
cerevisiae physiology. Using combinations of one or more sequence repeats and a set of native S. cerevisiae 
promoters, we designed a series of hybrid promoters that can be induced differently and to different levels with the 
same synthetic TF and a given level of exogenous estradiol. Using a combination of the j5 DNA assembly design 
software (j5.jbei.org (Hillson et al., 2012)) and the Pr-Pr laboratory automation platform (prpr.jbei.org (Linshiz et al., 
2014)), both developed at JBEI, and the gene-synthesis capability at DOE’s Joint Genome Institute, a library of 240 
promoter sequences were designed, constructed, and tested. 

Figure 5. Synthetic Transcriptional Factor-
Promoter set for the yeast metabolic engineering 
toolbox.  The chromosomally encoded synthetic 
TF can be coupled with a library of modified 
promoters to regulate genes with different 
inducibility and responsiveness in the same 
strain using the same level of an inducer 
compound.  

 
 

 

 

 

 

 

In order to easily test the large number of promoter constructs, we chromosomally integrated a native  yeast 
promoter driven copy of the LexA-hER-vp16 TF (Figure 5). We selected a native promoter that provides a 
constitutive expression of the TF. For the promoter series, with the exception of a few promoter scaffolds, almost 
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combinations of basal promoters in two lengths (100bp and 250bp) could be built with 1x, 2x or 3x repeats of four 
selected operator sequences. The plasmids with these hybrid promoter:yeGFP cassettes were transformed into the 
yeast strain with the chromosomally encoded synthetic TF. Estradiol concentrations from 0-100 nM were tested for 
each variant. Parameters of interest for each promoter; inducibility and response, measured in terms of the fold 
change in induction from 0-100 nM, and the maximal level of induction at 10 nM estradiol. The best results were 
achieved with the longer promoter regions (250bp). The final library contained many promoters that displayed the 
range of desirable profiles required to modulate multiple to genes different levels in a given strain using the same 
synthetic TF and therefore the same inducing compound.. This set of promoters, in combination with our synthetic 
TF, can be used to regulate numerous genes or pathways simultaneously, to multiple desired levels, with the same 
small molecule added to the culture medium, in a given S. cerevisiae strain.  
6. ADDITIONAL REGULATION CONTROLS  
6.1. Global regulators  

Exploiting global regulators to improve production phenotypes in E. coli is another approach to controlling 
engineered biosynthetic pathways for biofuel production. We explored the use of endogenous non-coding RNA, 
csrB, to alter carbon flux in E. coli (McKee et al., 2012). CsrA is an RNA-binding protein that alters concentrations 
of intracellular metabolites. We demonstrated alterations at the proteomic and metabolite level that were attributed 
to changes in the levels of CsrB, a non-coding RNA antagonist of CsrA, and employed these molecular variations to 
augment flux through engineered pathways (Figure 6). We employed this regulatory switch to improve production 
through the following routes: the 1-butanol pathway (from Clostridium acetobutylicum), the mevalonate pathway 
(from S. cerevisiae), and the native fatty acid (FA) pathway of E. coli. In each case we demonstrated fold-level 
improvements in the production of advanced biofuels or their precursors by perturbing the host strain’s native Csr 
regulatory system. 

Figure 6. Extensive metabolic remodeling is achieved 
through CsrB manipulation. The color scale indicates 
average fold ratios of intracellular metabolites and 
proteins from central metabolism in BLR-DAJ cells 
bearing pBbA5C-CsrB relative to the empty plasmid 
(pBbA5C) alone. Certain metabolites and proteins 
were not analyzed (black). Fold level changes 
represented by colored fonts (for metabolites) or 
colored boxes (for proteins) corresponding to the 
scale shown on the right. CsrA targets with potential 
or known binding sites are depicted by a brown 
outline around the corresponding protein box. 
Pentose phosphate (penP), erythrose-4-phosphate, 
(E4P), glyceraldehyde-3-phosphate (G3P), 3-
phosphoglycerate (3PG), phosphoenolpyruvate 
(PEP), pyruvate (pyr), acetyl-CoA (acCoA), 
oxaloacetate (oaa), citrate (cit), iso-citrate (i-cit), a-
ketoglutarate (akg), glyoxylate (glx), succinyl-CoA 
(sucCoA), succinate (suc), malate (mal), fumarate 
(fum). From McKee et al (2012).  

 

 

 

 

 

6.2. RNA device to control gene expression  

Biological systems exhibit functional complexity across multiple scales, from RNA, DNA, and protein 
subunit interactions to interactions among genes, pathways, circuits, and cells (Hazen et al., 2007). In nature, RNA 
structures process cellular information and regulate genetic expression at the levels of transcription, translation, and 
RNA degradation (Zhang et al., 2010). Synthetic aptamers, ribozymes (rbzs), and aptazymes (aptzs) assembled into 



static or dynamic ligand-responsive regulators can control gene expression in bacteria, yeast, and mammalian cells 
(Saito and Inoue, 2009). Given this functional potential, creating methods to rapidly assemble RNA-regulated 
devices with predictability should allow engineering of programmable pathway and circuit controller activities 
(Holtz and Keasling, 2010) and higher-order information-processing mechanisms (Benenson, 2009).  

We formulated a design-driven approach that used mechanistic modeling and kinetic RNA-folding 
simulations to engineer RNA-regulated genetic devices that control gene expression (Carothers et al., 2011) (Figure 
7). Ribozyme- and metabolite-controlled, aptazyme-regulated expression devices with quantitatively predictable 
functions were assembled from components characterized in vitro, in vivo, and in silico. We verified the models and 
design strategy by constructing 28 E. coli expression devices that gave excellent quantitative agreement between the 
predicted and measured gene expression levels (r = 0.94). We applied these technologies to engineer RNA-regulated 
controls in metabolic pathways. More broadly, we provided a framework for studying RNA functions and showed 
the potential for use of biochemical and biophysical modeling to develop biological design methods.  

Figure 7.  RNA-regulated expression devices and functional design space. (A) Functions of rREDs and aREDs were 
simulated with a coarse-grained mechanistic model of effective rate constants. (B) Tunable components and design 
variables for static rRED and dynamic aRED genetic controllers. nt, nucleotides. (C) Combinatorial design variable 
space was mapped to device outputs (grel) with Monte Carlo filtering. PCCs with grel measure the impact of 
individual design variables on device behavior. From Carothers et al (2011).  

 
7.  CONCLUDING REMARKS 
 

JBEI has successfully used a variety of approaches to artificially regulate gene expression with the goal of 
more precisely modulating the expression of biofuel metabolic pathway genes and balancing metabolism.  One way 
of accomplishing this is to engineer biofuel-producing hosts to dynamically modify gene expression in response to 
key intracellular or environmental conditions, so that genes are only expressed when needed and in proper amounts, 
and metabolic intermediates are converted to downstream products immediately after they are synthesized. For 
example, dynamic regulation based on metabolite-responsive transcription factors and promoters was used to 
improve FAEE and sesquiterpene production.  We have also (1) developed synthetic transcription factor-promoter 
sets for yeast that provide a range of expression strength and are orthogonal to regulation of native genes, (2) used 
global regulators that modulate carbon flux in E. coli, and (3) formulated a design-driven approach that used 
mechanistic modeling and kinetic RNA-folding simulations to engineer RNA-regulated genetic devices that control 



gene expression.  Finally, we have used regulation-based approaches for strain development, for example, by (1) 
developing a generalized approach to screen or select for improved small-molecule (e.g., biofuel) biosynthesis using 
transcription factor-based biosensors and (2) using Feedback-Regulated Evolution of Phenotype (FREP), an 
adaptive-control system that increases the mutation rate in order to generate diversity in the population, and 
decreases the mutation rate as the concentration of a target metabolite (e.g., biofuel) increases.  
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